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Abstract-We identify microstructures that extremize sums of strain energy densities. For one
energy we exhibit optimal laminar composites that are orthotropic with axes given by the eigenbasis
of the homogeneous strain. Some partial results on the uniqueness of the optimal microstructures
are obtained.

I. INTRODUCTION

The identification of extremal elastic composites has direct application to problems in
material science and structural optimization, There has been much work addressing the
optimal design of load bearing structures made from two or more elastic materials [see
Allaire and Kohn (1993); Jog et ai, (1993) ; Bendsoe and Kikuchi (1988); Cherkaev and
Gibianskii (1984)], The problem considered in this paper arises from optimality conditions
inherent in the problem of the optimal layout of two elastic materials in a prescribed
domain. Here one of the materials is an expensive material with desired stiffness properties,
while the other is a less expensive and more compliant material. For a given set of applied
loads, the object is to determine the optimal arrangement of the two elastic materials
necessary to maximize the overall stiffness. This optimization is carried out subject to a
resource constraint on the stiff material. It is well known from theory and numerical
experiments [see Murat and Tartar (1985); Lurie et al. (1982); Cheng and Olhoff (1981)]
that arbitrarily fine mixtures of the two constituents may appear in the optimal design. The
problem is made well-posed by extending the design space to include effective elastic tensors
corresponding to mixtures of the constituent materials [see Murat and Tartar (1985); Lurie
et al. (1982)]. Within this extended set of designs the controls are the local volume fraction
of the stiff material and an associated effective elastic tensor consistent with the local
anisotropy of the mixture. When the local volume fraction is either one or zero, the
associated region is occupied by the stiff or compliant material, respectively. Intermediate
values of the volume fraction correspond to regions occupied by mixtures of the component
materials with elastic properties described by effective elastic tensors. When mixtures occur
in the optimal design, the local anisotropy of the mixture is selected to maximize the local
strain energy density [see Lurie et al. (1982); Kohn (1991)]. For fixed local volume fraction
this optimality condition can be stated as follows: for a given strain e(x) the effective elastic
tensor C'(x) in the optimal layout maximizes the strain energy density

C(x)e(x) ·e(x). (I)

For problems with multiple independent load cases. One has that the effective elastic
tensor C'(x) maximizes the sum of strain energy densities

N

L: C(x)ei(x)' ei(x),
i= 1

(2)

where ei
, i = 1... , N are the local strains corresponding to each load case. In the event that
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the load cases are specified statistically we may replace the sum with an ensemble average
[see Lipton (1994)] :

<C(X)COC).

Since C(x) is deterministic we may take it outside the average and write

<Ceoe) = I: qjkl<eUekl)'
ijkl

(3)

(4)

In this paper we investigate the extremal effective tensors maximizing local strain
energy densities of the type (1)-(4). We consider two and three dimensional anisotropic
mixtures made from two well-ordered isotropic elastic materials in specified volume frac­
tions. We establish that the extremal effective tensor will inherit all rotational symmetry
present in the sum of strain energy densities Motivated by eqns (3) and (4) we rewrite eqn
(2) as:

where

tr(C eM) == I: CijklMijkl,
Ukl

N

Mijkl = L e:jGkl'
s = 1

(5)

(6)

Here the strains have been written out in terms of their components, i.e. e' = e:j • It is
easily seen that M ijkl is positive definite and M;jkl = Mjikl = Mk/ij' For the random case the
right hand side ofeqn (6) is replaced with the ensemble average <e;~kl)' In what follows we
show that the extremal effective tensor inherits whatever rotational symmetry is present in
the tensor M formed from the ensemble of local strains.

Mathematically our problem becomes one of characterizing composites with effective
elastic tensors ce that extremize the form tr (ceM) when the tensor M is invariant under a
prescribed group of rotations. We show that this form is extremized by finite rank laminar
composites with effective tensors invariant under the prescribed rotation group, see
Theorem 3.1. In other words there exist extremal composites with crystallographic sym­
metry consistent with the rotation group.

The scope of Theorem 3.1 includes the case when M is a projection onto a subspace
of strains invariant under a prescribed group of rotations, see Corollary 3.1. As a first
example, we choose M to be the projection onto constant shears denoted by Ps• Since this
subspace is invariant under the group of proper rotations 0 ~, it follows from Corollary
3.1 that there exists isotropic finite rank laminates that extremize tr (CM), see Section
3. In Section 4 we show that among laminates only the isotropic ones are extremal for
tr (CP,).

A second case concerns the problem of extremizing the effective strain energy density
associated with a prescribed homogeneous strain. We apply Theorem 3.1 to find optimal
laminar composites that are orthotropic with axes given by the eigenbasis of the homo­
geneous strain, see Section 3. Based on this observation we show that the stress tensor is
simultaneously diagonal with the homogeneous strain in the optimal composite. We remark
that the orthotropy of optimal laminar composites was illucidated earlier by Jog et al.
(1993) for the two dimensional case. For the cases of two dimensional elasticity and three
dimensional incompressible elasticity, the simultaneous diagonalization of stress.and strain
may be established using optimality conditions on the polarization field in the extremal
composite [see Allaire and Kohn (1993); Kohn and Lipton (1988)].
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Last, we note that closed form descriptions for the effective elastic tensors of finite
rank laminates have been found for the isotropic, cubic, transversely isotropic and ortho­
tropic cases, [see Avellaneda (1987a); Francfort and Murat (1986); James et al. (1990);
Lipton (1991); Lipton (1993a)]. These descriptions can be used to compute the extremal
values and microstructures associated with the form tr(C'M) when M possesses the requisite
symmetry.

2. FINITE RANK LAMINATES

In this section we review the extremality and convexity properties of effective elastic
tensors associated with finite rank laminar microstructures.

We consider laminates made from two well-ordered isotropic elastic components in
specified volume fraction, the component elasticities are specified by C i , i = 1,2, given by

(7)

with J being the identity on 3 x 3 symmetric matrices and I the 3 x 3 identity matrix we
adopt the convention /11 ~ /12, "I ~ "2' The volume fraction of each material is specified by
(}l for material I and (}2 for material 2, such that (}l + (}2 = 1.

A finite rank laminate is defined iteratively. To illustrate, we show how to construct a
rank 2 laminate. One starts with a core of material 2 and layers it with a coating of material
1 in layers of thickness 6

2 perpendicular to a specified direction nl' One then takes this finely
layered material and again layers it with a coating of material 1 in layers of thickness 6

perpendicular to a second direction n2' The 6 --+ 0 limit of this microgeometry is called a
rank 2 laminate. Conversely one could start with a core of material 1 and layer it with a
coating of material 2 and so on. Laminates of higher rank are constructed in the same way.
Explicit formulas have been developed for tensors describing the effective properties of
finite rank laminates [see Francfort and Murat (1986); Lurie and Cherkaev (1984); Tartar
(1985)]. For fixed volume fractio~ (}I and (}2 of materials 1 and 2 the effective elasticity
tensors of a rank j stiff laminate C with material 1 as core and material 2 as layers with
layer direction given by the unit vectors n1

, n2
, • •• , nj is given by

(8)

The effective elasticity of a rank j compliant laminate ~ with material 2 as core and
material 1 as layers with layering directions nl, n2

, • •• , nj is given by

(9)

Here

j

O~Pi~ 1, L Pi= 1,
;= I

and the tensor fr(v) is given by

(10)

(11)

(12)

for all symmetric 3 x 3 matrices M and r = 1, 2. The quantities (I - (}2) Pi and (}2Pi appearing
in eqns (8)-(10) are the relative proportions of layer materials introduced in the ith
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lamination. The geometry of the laminate is encoded in the geometric tensors Yr' To
emphasize the dependence of the effective properties on volume fraction and geometric
tensor we have written C = C(0'02; .9""2), ~ = Q02; .9""1)' Formulas (8) and (9) were
developed by Francfort and Murat (l986).

We introduce the convex sets of tensors db d 2 formed by all convex combinations of
the type Y b Y 2 delivered by formula (10). To understand the geometry of these sets we
regard {'rev), r = 1,2 given byeqn (12) as tensor valued maps transforming the surface of
the unit sphere into surfaces in the space of fourth order totally symmetric tensors. It is
evident from eqn (10) that d] and d 2 correspond to the closed convex hulls of these surfaces.

From the cOJ?vexity ofd" r = I, 2 it follows that any convex combination ofgeometric
tensors Y r must lie in d r and correspond to the geometric tensor for some finite rank
laminar microgeometry.

Finite rank laminates are known to possess extremal elastic properties (see Cherkaev
and Gibianskii (1984) ; Lurie et al. (l982) ; Francfort and Murat (1986) ; Avellaneda (1987a,
b); Kohn and Lipton (1988) ; Milton and Kohn (1988)]. We let Go, be the set of all effective
elastic tensors C associated with composites made from well-ordered isotropic components
C1 and C2 in the volume fractions 01 and O2, respectively. It was demonstrated by Avellaneda
(1987b), that for any positive definite fourth order tensor M one has

max tr(CM) = tr(CM),
cer.Go:

min tr(C M) = tr(CM),
c"r:Go! -

(13)

(14)

where the extremal effective tensor Cappearing in eqn (13) is associated with a stiff laminar
composite and the extremal effective tensor ~ appearing in eqn (14) is associated with a
compliant laminar composite.

One also has a convexity property for finite rank laminates in terms of the geometric
tensor [see Lipton (l994b)]. Indeed, given two geometric tensors Y 1 and Y; in db then for
any positive definite symmetric fourth order tensor M and 0 ~ w ~ lone has:

wtr(~(02;YdM)+(1-w)tr(f(02 ;Y'I)M) ;:, tr(f(02; wY 1 +(l-w)Y'dM). (15)

Similarly for Y 2 and Y; in d 2 and for any positive definite symmetric fourth order
tensor M and 0 ~ w ~ lone has:

We illustrate how rotation matrices act on the effective elasticity tensors of finite rank
laminar microstructures. Denoting a rotation matrix by Q, the conjugation of a fourth
order elasticity tensor is denoted by

(17)

Noting that the component elasticities are isotropic it follows immediately from formulas
(8) and (9) that

and

Q® Qf(02 ;Y1)Q® Q =f(02 ;Q® QY1Q® Q).

(18)

(19)
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For future reference we observe that for ffr given by eqn (10), we have:

j

Q ® QffsQ ® Q = L pJ'r(Qni
).

;= I

3411

(20)

In this way we see that the convex sets ~" r = 1, 2 are invariant under the action of O~ .
Finally, we note that all elements ff r of ~r lie on the hyperplanes given by

2 1
tr(ffrPs) = 3 4 + -,

Kr+ tJ.r tJ.r

and

where Ps and Ph are the projections onto shears and hydrostatic strains, respectively.

(21)

(22)

3. EXTREMAL PROPERTIES OF SYMMETRIC COMPOSITES

We denote by '§ the matrix representation of a rotation group and state the main result
of this exposition.

Theorem 3.1. Let M be a positive definite fourth order te~or invariant under the
rotation group '§, then there exists extremal effective properties C and f:.- invariant under
rotations in '§, associated with finite rank stiff and compliant laminates, respectively such
that:

max tr(C'M) = tr(eM)
Cf!eG

02

min tr(C'M) = tr(CM).
cf!f.G

V2
-

(23)

(24)

The proofofTheorem 3.1 follows from the extremal, convexity, and rotation properties
of finite rank laminates as presented in Section 2. In what follows we establish eqn (23) of
theorem 3.1 noting that eqn (24) is proved similarly.

We define the average of a fourth order tensor M over the group '§ by

<M) == LQ ® QMQ ® QdH (25)

where H is the Haar measure for the group '§. If'§ is finite we denote the order of the group
by v and write

(26)

for elements QY, Y = 1, ..., v in '§.
Given a fourth order tensor M satisfying the hypothesis of Theorem 3.1, then as in

eqn (13) there exists an effective tensor C«(}2; ff2) associated with a finite rank stiff laminar
composite such that:
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maxtr(COM) = tr(C«(J2;ff2)M).
C<'f.G0

2

(27)

Since M is invariant under t!J one has M = <M) and we obtain

From the rotation property of laminates it follows that

(28)

(29)

Therefore we may apply the concavity property (16) to the right hand side of eqn (28) to
obtain the inequality

(30)

Finally applying eqn (20) and noting that L\2 is a convex 14 dimensional set we see from
Caratheodory's theorem that

(31)

where g-2 is the geometric tensor for a finite rank stiff laminate of the form given by eqn
(10). In this way we arrive at the inequality

thus the effective tensor C«(J2' g-2) is extremal, i.e.

- *max tr(ceM) = tr(q(J2 ; ff2)M).
Ct'r.G0

2

(32)

(33)

- *To see that q(J2' ff 2) is invariant under t!J we note that for any rotation Q in t!J one
has

1he first equality follows from eqn (18) and the last equality follows from the fact
that ff2 is the group average of the tensor :T2 and therefore invariant under t!J.

We consider the action of a rotation group t!J on the space of 3 x 3 strain matrices
S3 x 3. The invariant subspaces are denoted by VI, V2, • • • , V3 and their associated
projections are given by &'11 &'2, ... '&'j'

An immediate consequence of Theorem 3.1 is the following corollary.

Corollary 3.1. Given a projection f7J j onto an invariant subspace of a rotation group t!J
then there exists extremal effective properties C and ~ invariant under rotations in t!J,
associated with finite rank stiff and compliant laminates, respectively, such that:

(35)

(36)
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As a first application we consider the projection f?J. onto the space of shear strains,
and find optimal microstructures extremizing tr(C'f?J.). Since this space is invariant under
the group ot of proper rotations we see from Corollary 3.1 that there exists extremal
effective properties Cand r which associated with isotropic finite rank stiff and compliant
laminates, respectively. It was shown by Francfort and Murat (1986) that the set ofisotropic
effective properties delivered by laminar microgeometries consists of just two tensors;
one corresponding to compliant laminates and the other to stiff laminates. The layer
microgeometries and associated effective properties of isotropic laminates can be found in
Francfort and Murat (1986). In Section 4, we strengthen this result and show that among
laminates only the isotropic ones extremize tr(C'PS>.

Next we consider optimal microgeometries with effective tensors extremizing one
energy. Given a uniform strain e, the effective strain energy in a composite is given by
Cee 0 e. Algebraic manipulation gives

Ceeoe = tr(C'M),

where M = e Q9 e. We expand the strain e in its spectral resolution

3

e = L Si~; Q9 ~i,
;=1

(37)

(38)

and consider the "orthotropic" Yl' of 180 degree rotations around each eigenaxes ~i, i = 1,
2,3. For the choice M = e Q9 e one has

Q Q9 QMQ Q9 Q = M,

for every rotation Q in Yl'.
Therefore from Theorem 3.1 we have that

max tr(CeM) = tr(CM),
ct'r.G0

1

min tr(CeM) = tr(CM),
Ct'eG

IJ2
-

(39)

(40)

(41)

where C and C are invariant under rotations in Yl' and are associated with finite rank stiff
and compliant laminates, respectively.

In this way we see that the optimal laminar microgeometry is orthotropic with respect
to the eigenaxes of the strain. This observation was made by Jog et al. (1993) for the two
dimensional case using the results of Pederson (1989) on optimal alignment of orthotropic
materials in two dimensional elasticity.

We consider the strain in the optimal composite C appearing in eqn (40). The strain (1

is given by

For any Q in Yl' we observe that

(1 = Ceo (42)

Q(1QT = Q(Ce)QT

= QC(QTeQ)QT

= Q Q9 QCQ Q9 Qe

= Ce = (1.

(43)

(44)

(45)

(46)



3414 R. Lipton

Here the second equality follows from the identity e = QTeQ and the second to last equality
follows from the invariance of C under .Yf. Thus as QaQT = a for all Q in .Yf we see that
the stress a is simultaneously diagonal with the strain e in the optimal laminar composite.

Identical arguments show that the associated stress in the compliant laminar composite
~ minimizing the elastic energy is simultaneously diagonal with the strain. We note that
these results are naturally consistent with the conditions for optimal orientation of ortho­
tropic materials given in Seregin and Troitskii (1982).

4. UNIQUENESS OF EXTREMAL PROPERTIES

It is of interest to examine the uniqueness of effective elastic properties that extremize
various measures of structural performance. In this section we consider the uniqueness of
effective elastic properties extremizing the functional tr(Ceps ) introduced in Section 3.
There it was shown that extremal effective properties could be found in the class of isotropic
effective tensors associated with finite rank laminates. Here we strengthen this result and
show that among laminates only the ones with isotropic effective tensors are optimal.

We consider the problem of maximizing tr(CP,) and show only a stiff laminate with
an isotropic effective tensor is optimal among laminates. To do this we introduce the
function g(t) defined for 0 ~ t ~ 1 given by

(47)

where 5-2 is the geometric tensor of an isotropic finite rank stiff laminate, and :!72 is a fixed
but arbitrary geometric tensor. The set of geometric tensors 5-2 for stiff isotropic laminates
consists of just one tensor [see Francfort and Murat (1986)] and is given by

. 1( 2 1) 1:!7 =- +-P+ P
2 5 3K2+4tt2 tt2 s 3K2+4tt2 h'

We observe that for t = 0, one has

- .
g(O) = tr(C«(}2 ; :!7s )Ps ) ,

(48)

(49)

- .
where C«(}2 ;:!72) is the effective tensor of an isotropic stiff laminate shown to be maximal
in Section 3. For t = 1

(50)

where C«(}2;:!7 2) is the effective tensor of a laminate with geometric tensor :!72'

Our claim follows from the strict concavity of the function g(t). Indeed, ifg(t) is strictly
concave and there exists a stiff laminar composite C«(}2 ;:!72) maximizing tr(cePJ then

tr(C«(}2 ;:!72)Ps) = tr(C«(}2 ; 5-2)Ps )

= t tr(C«(}2 ;:!72)Ps ) + (1 - t)tr(C«(}2 ;Y2)P,)

= t g(1) + (1- t)g(O) < g(t). (51 )
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- .
Noting that the tensor C(02; t f7 2+(1- t)f72) appearing in the definition of g(t) cor-
responds to a stiff laminate with geometric tensor

(52)

we arrive at the contradiction

(53)

and our claim follows. •
We now establish strict concavity for g(t). For geometric tensors f7 2 and f7 2 we denote

their restrictions to the subspace of shears by f7 2,s and .r2,S' respectively. We observe that
if

then from eqn (49) we have

•
f7 2,s = f7 2,S' (54)

(55)

and from eqn (22) it follows that

(56)

Motivated by these remarks we need only show the stri~t concavity of the function
g(t) for any choice of geometric tensor f7 2 such that f7 2,s =F f7 2,s' Strict concavity of g(t)
follows immediately from the observation:

Lemma 4.1. For any geometric tensor f7 2 such that f7 2,s =F .r2,s one has a~ g(t) < 0
for 0 < t < 1.

Before establishing the lemma, we compute a~ g(t) to obtain:

where

(58)

Introducing an orthonormal basis on the space of shears given by ei
, i = 1, ... , 5 and

expanding Ps in its spectral representation we find that:

5

a~g(t) = -2(1-02) L I(B-tD)-1/2D(B-tD)- tei I2 ~ O.
;=1

(59)

It is evident that to establish the lemma it suffices to show: if f7 2,s =F .r2,s then
a~ g(t) =F 0 for 0 < t < 1. We establish this boY a contrapositive argument; we show that if
a~ g(t) = 0 for some t in (0, 1) then f7 2,s = f7 2,s' Indeed, suppose a~ g(t) = 0 for some t in
(0,1), then from eqn (59) it follows that
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(B-tD)-1/2D(B-tD)-lf/=O, i= 1,2, ... ,5. (60)

Since (B-tD)-1/2 is non-singular it is evident that the vectors (B-tD)-I~i lie in the
kernel of D and one has the system of equations:

D/=O,

for i = 1,2, ... , 5.
Multiplying both sides ofeqn (61) by (B-tD) and application ofeqn (62) gives

•
Since !!72 is isotropic, it follows that the tensor B- I is isotropic and

(61)

(62)

(63)

(64)

where b > °is the shear modulus of the tensor B- 1
• Multiplying eqn (64) by D and applying

eqn (62) gives

(65)

•
for the basis of shears ~i, i = 1, 2, ... , 5, and we conclude !!72.s = !!72.s'

Last, we remark that similar arguments show that tr(C·Ps ) is minimized only by an
isotropic finite rank compliant laminate, i.e. all anisotropic laminates give larger values of
tr(CPs ). We note that the exclusive minimization of tr(CPs ) by finite rank isotropic
laminates was first shown using necessary conditions of optimality for the Voigt bounds
on polycrystalline elastic composites as done by Milton (1993).
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